Contact Radius and the Insulator-Metal Transition in Films Comprised of Touching Semiconductor Nanocrystals.
نویسندگان
چکیده
Nanocrystal assemblies are being explored for a number of optoelectronic applications such as transparent conductors, photovoltaic solar cells, and electrochromic windows. Majority carrier transport is important for these applications, yet it remains relatively poorly understood in films comprised of touching nanocrystals. Specifically, the underlying structural parameters expected to determine the transport mechanism have not been fully elucidated. In this report, we demonstrate experimentally that the contact radius, between touching heavily doped ZnO nanocrystals, controls the electron transport mechanism. Spherical nanocrystals are considered, which are connected by a circular area. The radius of this circular area is the contact radius. For nanocrystals that have local majority carrier concentration above the Mott transition, there is a critical contact radius. If the contact radius between nanocrystals is less than the critical value, then the transport mechanism is variable range hopping. If the contact radius is greater than the critical value, the films display behavior consistent with metallic electron transport.
منابع مشابه
Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy
We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a pe...
متن کاملInvestigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method
Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) were studied for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...
متن کاملSynthesis and characterization of transition metal doped ZnSe/ZnS nanocrystals by a rapid photochemical method
In the present work, a one pot, rapid and room temperature photochemical Synthesis of transition metal (TM; Cu, Mn, Cr)-doped ZnSe/ZnS core/shell nanocrystals (NCs) was reported. FT-IR spectrum confirmed the capping of ZnSe by thioglycolic acid. XRD and TEM analysis demonstrated zinc blende phase NCs with an average size of around 3 and 5 nm for TM:ZnSe and TM:ZnSe/ZnS NCs, respectively. PL spe...
متن کاملElectroresistance and field effects in epitaxial thin films of Pr0.7Sr0.3MnO3
Highly epitaxial thin films of Pr0.7Sr0.3MnO3 were grown on (100) SrTiO3 single crystal substrates by laser ablation. Similar to other manganite compounds, these Pr0.7Sr0.3MnO3 films exhibited remarkable magnetoresistance. Application of electric currents could induce a remarkable reduction in resistivity, demonstrating a strong electroresistance effect. The ratio of the resistance variation, E...
متن کاملA Surface Insulator-to-Conductor Phase Transition in Colossal Magnetoresistive Manganese Perovskites Thin Films
We have observed a distinct surface phase transition for an important class of colossal magnetoresistive materials, La0.65D0.35MnO3 (with D = Sr, Pb) occurring in a surface layer compositionally different from the bulk. The surface phase transition occurs around 240 K compared to 350 K for the bulk and is fundamentally different. In the bulk, a ferromagnetic metal to paramagnetic ‘bad metal’ oc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 10 7 شماره
صفحات -
تاریخ انتشار 2016